新课程下数学课堂教学模式的尝试

2008-08-02

  数学教学模式的选择,是决定学生在课堂教学中能否很好地获取知识、形成能力的关键因素。《数学课程标准》提出数学教育要以有利于学生全面发展为中心,以提供有价值的数学和倡导有意义的学习方式为基本点。在此理念下,数学教学应是数学活动的过程。教师要重视知识的发生和发展,给学生留有充分的时间与空间,使学生亲自参与获取知识和技能的全过程,激发数学学习兴趣,培养运用数学的意识与能力。 数学课堂的教学模式是开放性的。优秀的数学教师,不仅要学习和掌握各种类型的教学模式,还要在实践中不断加以创新,才能针对当前课程及教学内容选用恰当模式,并因材制宜地调控和综合运用最优组合模式,从而达到最佳教学效果。笔者在教学实践中,不断地学习摸索,总结实验,针对不同课型选择不同教学模式,收到较好的效果。以下就几种课型做简要说明。 一、新授课教学模式 新授课通常包括基础知识课、概念课、定理推导课等课型。 1 、基础知识课教学采用“启发探究式” 基本程序是:导入→探究→归纳→应用→总结。 教学过程的导入环节就仿佛是优美乐章的序曲,如果设计安排得有艺术性,就能收到先声夺人的效果。总的说来,新授课的导入要遵循简洁化、科学化和艺术化原则。新授课的导入方式很多,如实例式导入,新旧知识类比导入,引趣式导入,设疑式导入等。 例如,初三数学在引入反比例函数概念时,可以采用“新旧知识类比导入”,依次引导如下: (1) 什么叫做函数? (2) 两个变量 x 、 y 满足什么关系时是反比例的关系?( xy=k ) (3) 你能给出反比例函数的定义吗?( y= (k 0) ) (4) 对于反比例函数的定义我们应该注意些什么呢? 这样学生的思维处于“问题情境”之中,在内在的驱动力下,就会积极思考、探索,最终获得知识。 在探究过程中,教师一定要注重数学思维过程的展现。数学教育的主要意义在于培养人良好的思维习惯和思维策略,增强反应能力。因此,教师在教学中不仅要让学生知其然,而且应该知其所以然,使学生学会思考,提高思维能力。 例如,初三学习一元二次方程的解法 ------ 求根公式法时,教材是运用配方法推导的,配方法是一种很好的数学思想方法,为学生今后学习一元二次方程的判别式、二次函数等知识做了铺垫。如果教师只是把公式告诉学生,而忽略公式的推导过程,那么就失去一次锻炼学生数学思维的机会。长此以往,学生只能变成机械的解题机器,得不到能力培养。同时,在探究过程中,学生会不自觉地在教师的启发下对知识体系中蕴涵的内在联系和思想方法进行提炼和归纳,从而完成对新知识的认知过程。这种教学模式的表面形式多是“两头活中间静”,所谓“两头活”是指在一节课的开头和末尾课堂上的交流气氛相当活跃。“中间静”是指在知识形成后的'一段时间内,教师要让学生安安静静地做题,对新知识进行巩固和应用。 2 、概念课教学采用“结构教学模式” 基本程序是:自学→提炼→交流→形成结构→巩固练习。 这种模式的特点是强调学习过程中学生的主动性和建构性,主张知识结构网络化。即在学生思考的基础上组织交流,在交流中引导学生认真观察、思索,找出共性,加以概括,形成概念,并对知识结构网络化。这种方式对揭示知识规律,认识知识本质有很好的帮助。 例如,初三数学四边形一章中的矩形一节学习中,教材概念、定理和结论很多,学生不易掌握。采用结构教学模式,首先让学生在学习平行四边形的基础上自学矩形,然后由学生提炼出知识结构,在交流的基础上教师加以指导,完成认知。知识结构如下: 图形 平行四边形 矩形 定义 两组对边分别平行 有一个角为 90 度的平行四边形 性质 边 对边平行且相等 对边平行且相等 角 对角相等,邻角互补 四角相等,都等于 90 度 对角线 互相平分 互相平分且相等 判定 两组对边分别平行 两组对边分别相等 一组对边平行且相等 两组对角分别相等 对角线互相平分 有一个角为 90 度的平行四边形 三个角为 90 度的四边形 对角线互相平分且相等的四边形 通过以上知识结构,学生会清楚、系统地掌握矩形的知识,并且通过类比自行总结矩形的知识结构,找出了矩形和平行四边形的异同,使前后知识联系紧密,从而使枯燥、零乱的一堂课变得生动而紧凑。 3 、定理新授课教学采用“发现式教学模式” 基本程序是:创设情景→提出问题→组织交流→鼓励猜想→引导论证→运用结论。 这一过程中主动权在学生手里,引导学生发现推理,形成知识,满足学生期待,解决实际问题。具体操作方法与启发探究式相似,重点是要鼓励学生大胆猜想,培养学生的创新能力和数学素养。 例如:初四数学在学习圆中的圆幂定理的时候,我们可以先让学生画好图形,大胆猜想,并试图证明,学生不会遇到多大的困难,通过自己的发现得到的结论印象会更深刻,更牢固。 并且在交流的基础上,学生会总结出他们的内在联系,如图: 我们会总结出推广的圆幂定理:从圆内(外)一点引两条直线,这一点和直线与圆的两个交点所形成的两条线段之积为定值。使学生掌握知识的灵活性得到了提高。 4 、新授课采用多种教学模式时应注重对教材内容进行整合。 在新授课教学中,许多教师都有一种困惑,教材改革之后,课时和教材内容比起来显得较紧张,采用上述教学模式时总担心时间不允许,实际上,新课程标准的出台就是要改变我们过去的教学方式。解决这个问题的方法,一方面是教师要改变教学观念,丢掉面面俱到一讲到底的旧传统,运用新的教学模式;另一方面要深入研究教材,在充分理解教材的基础上对其进行适当整合。 二、习题课教学模式 习题课教学采用“导练建构式”教学模式 基本程序是:变式导练→应用建构→归纳提炼→完善建构。 提高习题课质量关键是精选习题和解题后的回顾与反思,使学生通过自己做题巩固学过的知识并发展能力。习题应以变式题为主,变式训练可采用如下方式: 一题多问式,这种题型能使学生系统地对本单元基本知识点做归纳,有利于巩固基础知识。 一题多解式,对同一问题尽可能地鼓励学生超越常规,提出多种设想和解答。一题多解的例子很多这里不再赘述。它不仅可以加深学生对所学知识的理解,达到熟练运用的目的,更重要的是扩大学生认识的空间,激发灵感,提高思维的创造性。 一题多变式,伽利略曾说过“科学是在不断改变思维角度的探索中前进的”。故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例习题的教育功能,培养学生创新能力。 例如:初中数学几何第三册 67 页练习第 2 题 已知:在 中, 的平分线 AD 交 BC 于 D ,圆 O 过点 A ,且和 BC 切于 D ,和 AB 、 AC 分别交于 E 、 F 。 求证: EF ∥ BC 变式一:知在 中, 的平分线 AD 与 的外接圆相交于 D ,过 D 作圆的切线 BC 。 求证:, EF ∥ BC 变式二:知在 中,过点 A 与 BC 相切于 D 的圆分别交 AB 、 AC 于 E 、 F ,且 EF ∥ BC 。求证: AD 平分 变式三:知在 中, 的平分线 AD 与 AD 与 的外接圆相交于 D ,过 D 作 EF ∥ BC 。求证: BC 与圆相切 这种训练,紧扣教材、适当变形,使学生了解命题的来龙去脉,探索命题演变的思维方法,是发展学生发散思维的有效途径。 多题一解式,学生在学习数学时常陷在无穷的题海中,但实际上许多问题具有共性,对这样的问题不断总结、积累,能加深学生对知识内在本质的理解,提高分析问题、解决问题的能力。 三、复习课教学模式 复习课教学采用“导学模式”。 基本程序是:复习→交流→概括→练习。 传统数学复习课一般是由教师对所要复习的内容进行归纳,更多的是让学生做题。“导学模式”强调把系统归纳的责任还给学生,其目的是发展学生能力使其学会学习。复习时重在类化、系统化、概括化,并且可以和“结构教学模式”及“导练建构模式”结合起来。课前必须让学生亲自参与到复习中,如让学生看书自己查找学习中的漏洞,校正错误,写出归纳小结等,然后课上交流。交流形式可多样化,如小组内交流,全班交流,或错例分析交流,宣读小论文等。教师的主导作用是组织交流、引导合作,培养学生的归纳概括能力,补充和完善学生的思维建构等。需要强调的是,数学是学生在教师的主导作用下自己做会和悟会的,因此教师的分析讲解不能代替学生亲自经历这些过程。 “教学有法,但无定法”,就数学课堂教学而言,不可能存在一种放之四海而皆准的教学模式,教师要善于充分挖掘每个模式的教学功能,避免陷入教学模式单一僵化的误区,另外,从教学改革角度看,教学模式的综合、灵活运用,本身就是创新和发展。作为一名研究型的教师,要在继承和发扬每种教学模式传统优势基础上,不断整合与创建新的教学模式,注重计算机辅助教学与其它教学模式的有机结合,衍生和发展更新更有效的教学模式,形成个人独特的教学风格。

【新课程下数学课堂教学模式的尝试】相关文章:

1.试谈新课程理念下的课堂教学模式

2.新课程背景下"双语"课堂教学模式探析

3.浅谈新课程理念下的数学课堂教学

4.新课程理念下的小学数学课堂教学

5.浅谈新课程理念下英语课堂教学的新尝试

6.新课程理念下优化小学数学课堂教学

7.新课程背景下数学课堂教学现象的思考

8.尝试英语新课堂教学模式有感

范文先生网